Rheological properties of 2 grades of Polypropylene

Vidit Bhimrajka

Apparatus and Materials

- PP MFI 20 g/10min
- PP MFI 3 g/10min
- Instrument: Rheometer
 - $_{\odot}$ Conducted an amplitude sweep at 230°C
 - Conducted frequeny sweeps across temperatures (170°C, 200°C, 230°C, and 260°C)
 - \circ Frequency sweep: 0.5 rad/s to 500 rad/s (Strain = 5%)
 - Amplitude sweep: Strain = 0.01% to 1000% (Frequency = 10 rad/s)

- Yield point = 100%
- Decrease in elastic character at higher strain
- No intersection: Dominated by liquid character and prone to deformation (Fluid)

Amplitude Sweep for PP MFI 20

Amplitude sweep for MFI 3

- Yield point around 100% strain
- No intersection indicates liquid character dominates (Fluid)

- On average, G' of MFI 3 is much higher than MFI 20
- Indicates MFI 3's greater viscoelasticity leads to greater resistance to deformation
- Both are fluid, but MFI 3 has greater solid character and is better for extrusion

Storage Modulus of MFI 3 and MFI 20

- G" of MFI 3 is much higher that of MFI 20.
- MFI 3 shows a greater viscous component than MFI 3
- MFI 20 is better for injection molding as its G" is much higher than its G'

Frequency sweep MFI 20 and MFI 3 - Interpretation

Frequency sweep at 170°C (MFI 20)	Frequency sweep at 170°C (MFI 3)
• G'' = G' at around 80 rad/s	• G" = G' at 7 rad/s
 Fluid behavior dominates over gel-like, but resists deformation better than samples at 200°C, 230°C, and 260°C 	• Resists deformation and demonstrates solid gel-like behavior better than all other samples and is therefore most suitable for blown-film extrusion
Frequency sweep at 200°C (MFI 20)	Frequency sweep at 200°C (MFI 3)
• G" = G' at around 100 rad/s	• G" = G' at 12 rad/s
 Fluid behavior dominates at lower shear rate, but resists deformation better than higher temperatures 	 Resists deformation and demonstrates solid gel-like behavior better than at 230°C
Frequency sweep at 230°C (MFI 20)	Frequency sweep at 230°C (MFI 3)
• Storage modulus exceeds loss modulus after around 200 rad/s	• Storage modulus exceeds loss modulus after around 30 rad/s
 Deforms at lower frequencies due to increase fluidity 	 Sample resists deformation as G'>G" at higher frequency
Frequency sweep at 260°C (MFI 20)	Frequency sweep at 260°C (MFI 3)
G' <g" td="" throughout<=""><td>• G" = G' at 60 rad/s</td></g">	• G" = G' at 60 rad/s
 Prone to deformation at higher frequencies as well. Appears to plateau and should crossover at higher frequencies 	 Sample resists deformation as G'>G" at higher frequencies only due to lower viscosity

- As the temperature increases, the complex viscosity decreases.
- For each sample, there is an inverse relationship between the complex viscosity and the frequency. It shows shear thinning behavior (Non-Newtonian fluid).
- There is a similar trend as the MFI 20 samples.
- The viscosity of each sample is higher than its MFI 20 counterpart at the same temperature due to the increased entanglement of MFI 3.

- With the amplitude sweep we can see MFI 3 has a consistently higher storage modulus than MFI 20 indicating a greater elastic component at all temperatures
- The storage modulus for MFI 20 and 3 decreases as temperature increases and begins to plateau at higher frequencies
- Due to the consistently higher storage modulus of MFI 3, it is able to resist deformation better and is suitable for blown film extrusion

- MFI 3 has a consistently higher storage modulus than MFI 20.
- At 170°C and 200°C, MFI 20's G" is higher at higher frequencies indicating that MFI 3's longer chains disentangle faster and lead to lower viscosities at higher frequencies
- In general, MFI 3 is more viscous across temperatures

